Guide to power: различия между версиями

Материал из Tau Ceti Station Wiki
Перейти к навигации Перейти к поиску
(Исправлена орфография и грамматика)
 
(не показаны 32 промежуточные версии 11 участников)
Строка 2: Строка 2:
|reason = Перевод, перевод и еще раз перевод
|reason = Перевод, перевод и еще раз перевод
}}
}}
= Introduction =
= Введение =


Understanding the intricacies of the power dynamic in the station is key to keeping the station in order. Many, especially the [[Head of Personnel|HoP]], believe that the [[Captain]] is the seat of power on the station. This is untrue as having the Captain wired into the station's power grid provides minimal power at best.  
Понимание всех тонкостей оборота энергии на станции - ключ к поддержанию ее на плаву.


The real source of power comes from [[Engineering]] because without [[Station Engineer]]s to set up the power sources at the beginning of a shift, the station would cease to function normally and devolve into a degenerative society with no more power than a uncivilized horde of lowly [[Assistant]]s, who, it should be noted, also provide even less power when wired directly to the grid.
Место, где рождается энергия на станции - [[Engineering|Инженерный]] отсек. Без [[Station Engineer|Инженеров]], которые обеспечат беспрерывную подачу энергии, станция не сможет функционировать нормально и быстро скатится в дегенеративное общество, ничем по сути не отличающееся от дикой орды низшей касты [[Assistant|ассистентов]], которые, даже если приковать их к педальным генераторам, не смогут обеспечить станцию нужным количеством энергии.


= Power Sources =
= Источники энергии =


== [[Supermatter| Supermatter Engine]] ==
== [[Supermatter_Engine|Суперматерия]] ==
The supermatter is a giant pile of exotic material capable of emitting both ionizing radiation and (flammable) gasses. While the generation of these elements is normally rather low, the supermatter can be "activated" into releasing more by, well, most anything: even gasses can start the delamination process if they hold enough energy (heat, usually). You see where this is going? That's right, self-induced chain reactions. Your main job as an engineer will be to cool the supermatter down to prevent it from exploding (luckily a very easy job), while simultaneously exciting it to harvest radiation pulses. It's not an unforgiving engine, some would say it's even too stable to sabotage in a timely manner; read the [[Supermatter| Guide]] carefully and it will be hard to mess it up.
Суперматерия - это гигантский кристалл чистого форона, способный вырабатывать как ионизирующее излучение, так и легковоспламеняющийся газ. В то время как генерация этих элементов в нормальном состоянии довольно мизерная, суперматерия может быть "активирована" для раскрытия всего своего потенциала. Ваша главная работа в качестве инженера - охладить суперматерию, чтобы она не рванула (к счастью для вас, это очень легкая работа), одновременно с этим слегка повреждать ее, чтобы собирать импульсы излучения. Некоторые люди считают, что суперматерия практически невосприимчива к саботажу; прочитайте [[Supermatter_Engine|руководство по настройке]], и это действительно будет так.


== Singularity/Tesla Engine ==
== Сингулярность и Тесла ==
[[File:Singularity_engine.png|thumb|300px]]
[[File:Singularity.PNG|thumb|300px]]
The singularity and tesla engines are the primary source of power of some station. By harnessing either the radiant energy produced by a locally-controlled cosmic [[Singularity]] (otherwise known as a man-made black hole), or straight-up capturing the electric arcs from a giant ball of lightning, an enormous amount of energy can be generated for the station.
Сингулярность и двигатель Тесла - основные источники энергии на станции. Используя или излучаемую энергию от контролируемой [[Singularity_Engine|Сингулярности]] (также известной, как рукотворная черная дыра), или прямо поглощая электроэнергию от гигантской [[Tesla_Engine|шаровой молнии]], будут вырабатываться огромные объемы электроэнергии для нужд станции.


=== [[Singularity Engine]] ===
=== [[Singularity Engine|Сингулярный двигатель]] ===
The harvestable power emitted by a singularity takes the form of ionizing radiation pulses. These can interact with the misterious substance called "plasma" so as to generate electricity. The more plasma available, and the stronger and more frequent the pulses, the more power is generated. The net power output can be measured directly by using a multitool on the collector's wire, checking the first SMES unit connected for available power, or by looking it up on a power monitoring console (though the latter will give skewed results if other power sources such as solars are connected).
Гигантская энергия, вырабатываемая сингулярностью, имеет форму ионизированных ЭМИ. Эти импульсы взаимодействуют с загадочным веществом, именуемым фороном и генерируют электричество. Чем больше форона и чем сильнее и чаще импульсы, тем больше будет вырабатываться энергии. Эффективную выходную мощность можно измерить напрямую, используя мультитул на проводке коллекторов, или посмотрев консоль мониторинга энергии (правда, данные оттуда могут быть искажены, если на станции присутствуют дополнительные источники энергии, например, солнечные панели).


=== [[Tesla Engine]] ===
=== [[Tesla Engine|Двигатель Тесла]] ===
This giant ball of incandescent energy regurarly regurgitates power in the form of electric arcs. These arcs can be partially captured by tesla generators, and will generally flow along the most conductive/least resisting path. Metal structures are prime target for its strikes, and grounding rods are the safest there is, drawing arcs to themselves and subsequently dissipating them into the whole station. The latter are regularly used to direct lighting through tesla generators, and are best deployed between the engine and anything you hold dear.  
Этот гигантский шар ослепительной энергии регулярно выбрасывает мощнейшие электрические дуги, которые, как правило, распространяются по наиболее проводящим/имеющим наименьшее сопротивление путям. Энергию этих дуг частично поглощают катушки Тесла, а заземлители принимают на себя все излишки и безопасно рассеивают их по всей станции. Это свойство заземлителей широко применяется непосредственно для защиты сотрудников рядом с генератором, а так же для защиты чувствительной электроники.


== Solar Arrays ==
== Солнечные панели ==


[[File:Solars.png|thumb|300px]]
[[File:Solars.png|thumb|300px]]
''See [[Solars]].''
''Прочтите статью про [[Solars|Соляры]].''


The solar arrays act as a secondary power source. They are composed of 60 panels per array and there are 4 arrays on the station. Each panel can produce 1.5 kW of power for a total of 90 kW per array.  
Солнечные батареи являются вторичным источником энергии. На станции всего 4 солнечных батарей и состоят они из 60ти панелей каждая. Каждая панель может производить 1.5 кВт мощности, а батарея - 90 кВт.  


The solar arrays only produce power when directly facing the local star. (The star is off-screen from the station and cannot be located by the player directly.) A solar tracking module can be wired into the solar array circuitry and, with the help of a solar power console, the solar panels can be made to automatically track the local star, which maximizes the power generation for each panel. However, as the station revolves around the star (which, again, is unseen by the player), the solar arrays often land in the shadow of the station which negatively affects solar power generation at the affected arrays. This effectively gives the solar arrays a solar day-night cycle, where it generates power during the day cycle and does not generate power during the night cycle. Because of the solar cycle, a given array will be able to generate power about 50% (estimated but unconfirmed) of the time, which can be translated to an average 45 kW per unit time, rather than the full 90 kW.
На станции всего четыре солнечных батареи. Ближайшая находится западнее инженерного отсека, вторая находится на западе от брига, третья находится севернее РнД, четвертая находится на юго-востоке, недалеко от библиотеки.


The solar panels themselves can be, and often are, broken by debris floating in space. Each broken panel reduces the total power generation of the array.
Солнечные батареи производят энергию только когда направлены в сторону ближайшей звезды. (Звезду не видно со станции.) Чтобы довести производительность панелей до максимума, нужно подключить "solar tracking module" к схеме солнечной батареи, и, с помощью "solar power console" панели смогут следить за положением звезды. Важно отметить, что станция меняет свое положение относительно солнца (Что, опять же, невозможно увидеть на экране.) и солнечные панели часто попадают в тень станции, что негативно влияет на продуктивность батарей. Поэтому у солнечных батарей существует так называемый "Дневной цикл"(Когда они попадают под лучи солнца.) и "Ночной цикл"(Когда они находятся в тени.). Именно по этой причине солнечные батареи будут генерировать энергию около 50% процентов времени, то есть 45 кВт вместо возможных 90 кВт.


The solar arrays can typically power the entire station on their own, once the arrays are wired properly.
Солнечные панели могут быть сломаны космическими обломками. Каждая сломанная панель уменьшает производимую мощность всей батареи.
 
Солнечные батареи часто могут питать станцию полностью, если подключены правильно.


{| class="wikitable"
{| class="wikitable"
|+ Solar Power Generated
|+ Выработка солнечной энергии
! colspan = "2"|Maximum !! Average
! colspan = "2"|Максимальная !! Средняя
|+
|+
! per panel !! per array !! per array
! с одной панели !! с батареи !! с батареи
|-  
|-  
| 1500 W (1.5 kW) || 90000 W (90 kW) || 45000 W (45 kW)
| 1500 Вт (5,4 мДж/ч) || 90000 Вт (324 мДж/ч) || 45000 Вт (162 мДж/ч)
|}
|}


=== Connecting Solars to the Grid ===
=== Подключение панелей к сети ===
 
There are two main schools of thought when wiring the solar arrays:
 
* use the Solar SMESs to distribute power into the grid
* wire the solar array directly into the power grid


==== Distributing via SMESs ====
Существует два основных способа подключения солнечных панелей:


Distributing solar power through the SMESs is the generally preferred method of wiring the solars, mainly because it provides a steady power output and requires no extra wiring. One benefit of the pre-laid wiring to the SMES is that during a night cycle of the solar array the Engineer does not need insulated gloves to wire the solar array.
* использовать СПИН солнечной батареи для подачи энергии в сеть
* подключать солнечную батарею напрямую в сеть


While the maximum power generation of a given solar array is 90 kW, it is advised to set SMES inputs to slightly lower level to account for solar panels that might break during the course of the shift. 
==== Распределение через СПИН ====
For example, setting the SMES input levels to 85.5 kW may not collect all 90 kW produced by the array, but allows for the SMES to charge even when up to three panels get broken on the array. 
Otherwise, should the Engineer set SMES input levels to 90 kW and should a single panel get hit by space debris and break, the array will always produce less than 90 kW, so the SMES with a required 90 kW input will not charge. 
 
The output on the SMES should be at most 50% of the input level due to the revolution of the station around the local star (percentage estimated but unconfirmed). Since the solar has to collect enough energy in the day cycle of the array to output for both day and night, it's usually good to round down a little more. Additionally, if the solar is initially wired during its day cycle, it typically won't be able to collect enough to keep it charged for the first night cycle, resulting in a little bit of lag in the output of the solars. 
For example, if the input is set to 85500 W (85.5 kW), the output shouldn't be bigger than 42750 W (42.75 kW). Typically, 40 kW is a good round number for long-term power output. 
 
If more power storage is desired, say in the initial stage of the set-up, the engineer may want to reduce or even eliminate power output for the first few solar cycles, before setting the long-term power output.
 
Once all four Solar SMESs are adequately charged and outputting long-term power, they will provide a very dependable power output with almost no oversight needed. In our example, the station would receive 160 kW (4 arrays x 40 kW SMES output) from solars, which is usually more than enough to sustain the station on its own without the engine. This system is also modular, so that even if only three out of four Solar SMESs are used, the total power output is reduced accordingly but still completely steady.


That being said, if unchecked, power sinks can drain the solar SMESs, which if depleted would need to go through a solar cycle again before being able to provide steady, adequate power to the station. 
Распределение солнечной энергии через СПИН - это наиболее предпочтительный метод подключения солнечных панелей, главным образом потому, что он обеспечивает стабильную выходную мощность и не требует дополнительной проводки. Одно из преимуществ предварительно проложенной проводки к СПИН состоит в том, что во время ночного цикла инженеру не нужны изоляционные перчатки для подключения солнечной батареи.
 
The biggest failure of the Solar SMES system is more often the fault of the Engineer, not the power sink. A rookie Engineer usually sets input levels and output levels too high or too low to meaningfully sustain the station, and/or fails to re-set the SMESs to a more adequate output level after initially charging the SMES.
 
'''Pros:''' Steady power supply, no additional wiring necessary, stores power, modular, does not require insulated gloves.


'''Cons:''' Lag due to first night cycle and initial SMES charging, prone to being set up improperly, some power loss to correct for potentially broken panels, can be drained by power sinks.
Выходная мощность на СПИН должна составлять не более 50% от входной из-за оборота станции вокруг местной звезды (процентное соотношение просчитано, но не подтверждено). Поскольку солнечные панели должны собирать достаточно энергии в дневном цикле массива, чтобы выводить ее как днем, так и ночью, обычно лучше немного округлить. Кроме того, если солнечная батарея изначально подключена во время дневного цикла, она, как правило, не сможет собрать достаточно энергии, чтобы держать ее заряженной в течение первого ночного цикла, что приведет к небольшому запаздыванию на выходе батареи. 
Например, если входная мощность установлена на 85500 Вт (85,5 кВт), выходная мощность не должна превышать 42750 Вт (42,75 кВт). Как правило, 40 кВт - хорошее круглое число для долгосрочной выходной мощности.


==== Wiring to the Grid ====
Если требуется больше накопленной энергии, скажем, на начальном этапе установки, инженер может уменьшить или даже отключить выходную мощность в течение первых нескольких солнечных циклов, прежде чем устанавливать долгосрочную выходную мощность.


Wiring the solar arrays directly to the grid is often used as a more straight-forward approach to hooking up the solars, which benefits the Engineer by bypassing the intricacies of the SMES and generating a generally larger power output but at the expense of a less steady, less modular electrical source. This is often helpful in the emergency circumstance when the singlo is loose or otherwise not available, effectively making the solar arrays the primary power source.
После того как все четыре СПИН будут заряжены и будут выдавать долгосрочную мощность, они обеспечат очень надежную выходную мощность практически не требуя надзора. В нашем примере станция получит 160 кВт (4 массива x 40 кВт выходной мощности СПИН) от солнечных батарей, что обычно более чем достаточно для поддержания станции без двигателя. Эта система также является модульной, так что, даже если используются только три из четырех СПИН, общая выходная мощность соответственно уменьшается, но остается полностью стабильной.


To achieve this, the Engineer usually just wires together the cable leading from the array directly to the cable leading out from the solar maintenance room. Typically, insulated gloves are a necessity since the Engineer will need to tap the solar power lines into the main power grid. However, as easy as that sounds, rookie Engineers tend to mangle the wiring so much that the array power lines never make it to the grid.
Тем не менее, если их не проверять, [[Syndicate_Items#Power_Sink|поглотитель энергии]] может истощить солнечные СПИН, которые, в случае их истощения, должны будут снова пройти солнечный цикл, прежде чем они смогут обеспечить устойчивую, адекватную мощность для станции.


Once all the arrays are wired, and because of the day-night cycle, on average, about two solar arrays worth of power will be generated at any given time, equating to about 180 kW of power. However, the exact number will fluctuate depending on how much light reaches individual panels. Additionally, if not all of the solars are wired to the grid, the output will be drastically lower and may cause brown outs in the station. 
Самые большие неисправности системы СПИН чаще всего вызваны ошибкой инженера, а не поглотителем энергии. Инженер-новичок обычно устанавливает уровни входа и выхода слишком высокими или слишком низкими для значимого поддержания станции, и / или не может переустановить СПИН на более адекватный уровень выхода после первоначальной зарядки СПИН.
 
On the plus side, wiring the solars directly to the grid prevents wiring sabotage since anyone cutting the wires also needs insulated gloves. Also, power sinks pose little risk as the solar power is immediate and not distributed from an SMES.


'''Pros:''' Straight-forward explanation, avoids setting SMES, deters sabotage, acts as primary power source, not prone to power sinks.
'''Плюсы:''' Стабильный источник питания, дополнительная проводка не требуется, накапливает энергию, модульная, не требует изоляционных перчаток.


'''Cons:''' Minor fluctuations in power if fully implemented, severe fluctuations if incompletely implemented, requires insulated gloves, often incorrectly wired.
'''Минусы:''' Задержка из-за первого ночного цикла и начальной зарядки СПИН, подверженность неправильной настройке, возможность истощения с помощью поглотителя энергии.


==== Dual-Wiring: The Best of Both Worlds ====
==== Подключение к энергосети ====


There is another, less used option that utilizes the benefits from both wiring ideologies while mitigating the risk: dual-wire the solar arrays both to the Solar SMESs and directly into the grid at the same time.
Подключение солнечных батарей непосредственно к сети часто используется в качестве более простого подхода к подключению, что выгодно инженеру, обходя хитросплетения СПИН и генерируя в целом большую выходную мощность, но за счет менее устойчивого и менее модульного источника энергии. Это часто полезно в чрезвычайных обстоятельствах, когда сингулярность сбежала или по иной причине недоступна, что делает солнечные батареи основным источником питания.


Initially, the Engineer would want to charge the SMESs enough to where they could give an adequate supply of power. Then, if the Engineer is skilled enough at wiring, both the SMES and the solar arrays can be wired to the grid at the same time. Since the station only draws about 150 kW, but the solars wired to grid produce 180 kW, there's a spare 30 kW to split between the Solar SMESs for recharging. Setting all four Solar SMESs to charge at 6 kW is feasible (reduced from 7.5 kW to account for broken solar panels). The output setting on the SMES can be any value so long as the station draws full power from the solars wired directly. This effectively makes the Solar SMESs a backup power source.
Чтобы достичь этого, инженер обычно просто соединяет кабель, идущий от батареи непосредственно к кабелю, выходящему из помещения для обслуживания солнечных панелей. Как правило, изоляционные перчатки необходимы, так как инженер должен будет подключить линии электропередач солнечной батареи к основной электрической сети. Однако, как бы легко это ни звучало, инженеры-новички, как правило, ломают проводку настолько сильно, что линии электропередач батареи никогда не соединяются с сетью.


The drawbacks though are that the Solar SMES input levels should not be put higher than 6 kW since a Solar SMES located at an array going through the night cycle will attempt to draw power from a Solar SMES higher upstream in the [[#power queue]], cannibalistically draining that SMES.  
Как только все батареи подключены, в результате цикла день-ночь, в среднем, в любой момент времени будет генерироваться мощность около двух солнечных батарей, что составляет около 180 кВт мощности. Однако точное число будет колебаться в зависимости от того, сколько света достигает отдельных панелей. Кроме того, если не все солнечные панели подключены к сети, выходной сигнал будет значительно ниже и может вызвать перебои питания на станции.


Also, the 2 conventional Backup SMESs can't be charged for the same reason of the power queue. However, since the 4 Solar SMESs act as backups, this trade-off is in favor of the dual-wiring of the solars.
С положительной стороны, подключение панелей непосредственно к сети предотвращает саботаж проводки, так как любой, кто перерезает провода, также нуждается в изоляционных перчатках. Кроме того, поглотители энергии представляют небольшой риск, поскольку солнечная энергия является прямой и не распространяется через СПИН.


The Solar SMESs will still be prone to power sinks, but since the solars are wired directly to the grid it doesn't matter much.  
'''Плюсы:''' Простое объяснение, не нужно настраивать СПИН, предотвращает саботаж, действует в качестве основного источника энергии, не подвержен поглотителям энергии.


The drawback that all solars must be wired directly to the grid to prevent severe fluctuation. The same is not true of the SMES-side of this set-up. Each SMES acts like an independent backup, so any undesired SMESs don't have to be set, making the system semi-modular.
'''Минусы:'''  Незначительные колебания мощности, если все панели подключены, серьезные колебания, если подключены не все, требуют изоляционных перчаток, часто бывают неправильно соединена.


'''Pros:''' acts primary and backup power source, deters sabotage, resistant to power sinks, semi-modular, resistant to brownouts
==== Двойное подключение: что может быть лучше? ====


'''Cons:''' severe fluctuations if incompletely implemented, requires insulated gloves, often incorrectly wired, requires initial charging and follow up on the SMESs before implementation
Есть еще один, менее используемый вариант, который использует преимущества обоих способов подключения при одновременном снижении риска: двухпроводное подключение солнечных батарей как к СПИН, так и непосредственно к сети одновременно.


== Gas Turbine Generator ==
Первоначально инженеру стоит зарядить СПИН достаточно для того, чтобы они могли обеспечить необходимый запас энергии. Затем, если инженер достаточно опытен в проводке, и СПИН, и солнечные батареи могут быть подключены к сети одновременно. Поскольку станция потребляет всего около 150 кВт, а солнечные батареи, подключенные к сети, вырабатывают 180 кВт, есть запасные 30 кВт, которые нужно разделить между СПИН для подзарядки. Возможна установка всех четырех СПИН для зарядки при 6 кВт(уменьшена с 7,5 кВт для учета сломанных солнечных панелей). Настройка выходной мощности на СПИН может принимать любые значения, при условии, что станция получает полную мощность от проводов, подключенных напрямую. Это делает СПИН резервным источником питания.


[[File:Incinerator.png|thumb]]
СПИН будут по-прежнему подвержены влиянию поглотителя энергии, но поскольку солнечные батареи подключены непосредственно к сети, это не имеет большого значения.
''See: [[Incinerator]]''


The gas turbine generator is a tertiary power source that was recently installed in the incinerator. By utilizing the temperature differential between very hot air and very cold air, the turbine generator is able to create a nominal amount of electricity. The hot air is created by burning plasma and oxygen gas mixtures. The cold air is creating by passing air through cooling tubes located in space.  
Недостаток состоит в том, что все солнечные батареи должны быть подключены непосредственно к сети, чтобы предотвратить сильные колебания. Это не относится к СПИН этой системы. Каждый СПИН действует как независимый резервный источник, поэтому любые нежелательные СПИН не нужно устанавливать, что делает систему полу-модульной.


Although it's usually the last power source set up on the station, it's the only power source that can be accessed by Atmospherics. Also, they're the only ones who can turn on and mix the gas feed needed to sustain the generator without the use of gas canisters. The exact gas mixture for optimal power generation is unknown at this point, but some Engineers have reported values as high as 100 kW and in typical Engineer fashion forgot to write down their recipe. Be prepared to field questions from <s>overprotective</s> proactive [[AI]]s who notice plasma in the mixtank.
'''Плюсы:''' действует как основной и резервный источник питания, предотвращает саботаж, устойчив к поглотителям энергии, полу-модульный, устойчив к перебоям


== Portable Generators ==
'''Минусы:''' серьезные колебания, если подключены не все панели, требует изоляционных перчаток, часто бывает неправильно соединена, требуют начальной зарядки и контроля над СПИН перед внедрением


Portable generators are failsafes when all other systems fail. They require fuel that is fed directly into the generator by hand. The type of fuel is dependent which type of generator is being used.
== Портативные генераторы ==


Portable generators can be upgraded using parts created by a protolathe.
Портативные генераторы пользуются спросом, когда все остальные системы отключаются. Они нуждаются в топливе, которое загружается руками прямо в генератор. Тип топлива отличается в зависимости от типа.


Портативные генераторы можно улучшить, заменив детали на новые в протолате.
Scrapman
{| class="wikitable"
{| class="wikitable"
|+ Fuel Required by Portable Generator Type
|+ Типы генераторов и топливо для них
! Type !! Fuel
! Tип !! Топливо
|-
|-
| P.A.C.M.A.N. Portable Generator || Plasma
| P.A.C.M.A.N. Portable Generator || Phoron
|-
|-
| M.R.S.P.A.C.M.A.N. Portable Generator || Diamond
| M.R.S.P.A.C.M.A.N. Portable Generator || Diamond
|-
|-
| S.U.P.E.R.P.A.C.M.A.N. Portable Generator || Uranium
| S.U.P.E.R.P.A.C.M.A.N. Portable Generator || Uranium
|-
| S.C.R.A.P.M.A.N. Portable Generator || Scrap
|}
|}


One PACMAN generator is located in the SMES room, with plasma located in secure storage, and it is suggested to use it while setting up the singularity to prevent early release.
Один ПАКМАН и форон для его питания находится в инженерном хранилище. По 2 СКРАПМАНА находится у мусорщиков и у шахтеров. Еще 4 ПАКМАНа находятся на астероиде (2 у ученых, 2 у шахтеров).


== Батарейки ==
== Батарейки ==


Батарейки используются для питания вещей меньших масштабов, нежели станция. Например, АПЦ и Киборгов. Создаются в протолате, делятся на разные типы в зависимости от емкости: обычная батарейка (default), высокой емкости (high-capacity), супер-высокой емкости (super-capacity), гипер (hyper-capacity) и блюспейс (bluespace-capacity).
Батарейки используются для питания вещей меньших масштабов, нежели станция. Например, электрических щитов и киборгов. Создаются в протолате, делятся на разные типы в зависимости от емкости: обычная батарейка (default), высокой емкости (high-capacity), супер-высокой емкости (super-capacity), гипер (hyper-capacity) и блюспейс (bluespace-capacity).


В игре имеется также картофельная и батарейка из ядра слизня.
В игре имеется также картофельная и батарейка из ядра слизня.
Строка 164: Строка 151:
|}
|}


= Power Distribution =
= Распределение энергии =
 
== Энергосеть ==
 
Для большинства людей это просто провода, которые бьются током, если их резать без изоляционных перчаток. Но на самом деле, электрическая сеть это "хребет" станции, питающий все: от эмиттеров, удерживающих сингулярность, до туалетов, которыми вы никогда не пользуетесь. А еще она может обжечь вас, если вы не носите изоляционные перчатки.
 
=== Схема энергосетей станции ===
 
[[Image:Powernets2.png|510x780px|right|Энергосети станции]]
 
На станции три основных энергосети:
*Основная, питающая все электрические щиты станции (красный провод)
*Зарядная, передающая энергию от генераторов в СПИН (желтый провод)
*Эмиттерная, соединяющая инженерный СПИН с эмиттерами сдерживающего поля (красный провод)


== Power Grid ==
В основную сеть не входит спутник ИИ и два электрощита в инженерной возле двигателя и в офисе Главного инженера. Эти щитки заряжаются напрямую от Зарядной энергосети. Зарядная сеть принимает энергию от радиационных коллекторов при работе [[Singularity_Engine|сингулярного двигателя]] или от катушек Тесла при работе [[Tesla_Engine|двигателя Тесла]]. У каждого блока солнечных панелей есть свой СПИН, который принимает энергию от панелей и отдает её прямиком в Основную энергосеть.


To most people they're just wires that burn the shit out of you when you try to cut them without wearing insulated gloves. But really, the power grid is the electrical backbone of the station, powering everything from the emitters containing the singularity to the APC that controls the bathrooms in the locker room that you never go to. Also, it burns the shit out of you if you try to cut it without wearing insulated gloves.
Подробнее о СПИН станции можно прочитать [[SMES#Работа со СПИН|тут]].


== SMES ==
== [[SMES|СПИН]] ==


[[File:SMES_Charging.gif]]
[[File:SMES_Charging.gif]]


A Superconducting Magnetic Energy Storage (SMES) Cell is the spess version of a giant rechargeable battery. The standard set-up for an SMES involves:
Сверхпроводящий Индуктивный Накопитель - СПИН или SMES - гигантская версия батарейки. Стандартно настроенный СПИН включает:
 
1. a wiring input from a power source, such as Solars or the Singularity Engine, or from the power grid itself, in the case of the Backups SMESs, and


2. a wiring output to the local power grid, or to a closed system like the AI or mining stations
# Вход для энергии от источника (терминал), например от панелей, сингулярного двигателя или просто из общей энергосети, если СПИН используется в качестве резервного хранилища.
# Выход для энергии в энергосеть или в закрытую энергосистему типа спутника ИИ или шахтерской станции.


=== SMES Properties ===
=== Свойства СПИН ===


SMES have a modifiable storage capacity, dependent on the [[power cell]]s installed in the SMES upon fabrication. All SMESs present at the beginning of a typical shift have a default capacity of 3.33 MW.
СПИН обладает модифицируемым хранилищем энергии, зависящим от батареек, которые были вставлены в него при постройке. Все СПИН, находящиеся на станции, по умолчанию имеют 5 МВт емкости и заряжены на 25%.


{| class ="wikitable"
{| class ="wikitable"
|+ SMES Capacity vs Power Cell
|+ Зависимость емкости SMES от батареек
! rowspan = 2|Power Cell !! colspan = 2|Capacity
! rowspan = 2|Батарейка !! colspan = 2|Емкость (Вт)
|-
|-
! per cell installed !! per 5 cells installed
! на одну батарейку !! на 5 батареек
|-
|-
! colspan = 3|Typical
! colspan = 3|Стандартные
|-  
|-  
| [[Power Cell|Standard]] || TBD || TBD
| [[Engineering_Items#Power Cell|Standard]] || 50000 (50 кВт) || 250000 (250 кВт)
|-
|-
| High-Capacity || TBD || TBD
| High-Capacity || 1000000 (1 МВт) || 5000000 (5 МВт)
|-
|-
| Super-Capacity || TBD || TBD
| Super-Capacity || 2000000 (2 МВт) || 10000000 (10 МВт)
|-
|-
| Hyper-Capacity || TBD || TBD
| Hyper-Capacity || 3000000 (3 МВт) || 15000000 (15 МВт)
|-
| Bluespace-Capacity || 10000000 (10 МВт) || 20000000 (20 МВт)
|+
|+
! colspan = 3|Atypical
! colspan = 3|Нестандартные
|-
|-
| [[Potato Cell]] || TBD || TBS
| Potato Cell || 30000 (30 кВт) || 150000 (150 кВт)
|-
| [[Cyborg Cell]] || TBD || TBD
|-
|-
| [[Slime Core/SMES Cell]] || TBD || TBD
| Slime Core Cell || 1000000 (1 МВт) || 5000000 (5 МВт)
|}
|}


SMES input (charging) and output levels can be modified using [[capacitor]]s. All SMESs present at the beginning of a typical shift have a basic capacitor with default i/o levels of 200 kW.  
Потребление (зарядка) СПИН и отдача могут быть модифицированы с помощью [[Research items#capacitor|конденсаторов]]. Все стандартные СПИН с базовыми конденсаторами имеют максимальные входную и выходную мощности в 200 кВт.  


{| class ="wikitable"
{| class ="wikitable"
|+ SMES Input/Output Levels vs Capacitor
|+ Уровни потребления/отдачи в зависимости от конденсатора
! Capacitor !! Max Input Level !! Max Output Level
! Конденсатор !! Max уровень потребления !! Max уровень отдачи
|-  
|-  
| [[Capacitor|Basic]] || 200000 W (200 kW) || 200000 W (200 kW)
| [[Research_items#Capacitor|Basic]] || 200000 Вт (200 кВт) || 200000 Вт (200 кВт)
|-
| Advanced  || 400000 Вт (400 кВт) || 400000 Вт (400 кВт)
|-
|-
| Advanced || 400000 W (400 kW) || 400000 W (400 kW)
| Super || 600000 Вт (600 кВт) || 600000 Вт (600 кВт)
|-
|-
| Super || 600000 W (600 kW) || 600000 W (600 kW)
| Quadratic || 800000 Вт (800 кВт) || 800000 Вт (800 кВт)
|}
|}


SMESs will only charge when the input power is equal or higher to the input levels specified on the SMES settings panel.
== [[APC|Электрощит]] ==
 
Likewise, SMESs will only output when the level of charge is above the output level specified on the SMES settings panel.
 
== [[APC|APCs]] ==


[[File:APC2.gif]]
[[File:APC2.gif]]


APCs, or Automated Power Controllers, are found in or, more likely, in maintenance just outside every room with power. They can be used to turn on or off the room equipment, lightning and environmental (a.k.a. ventilation) systems.
Электрощит (APC), или электрический щит находится во всех отсеках, которые питаются энергией. Они могут использоваться для включения/выключения оборудования и дверей в комнате, освещения и поддержания окружающей среды (вентиляция).
 
= Concepts =


== System Power ==
= Общие представления =


System power is the amount of power available to the station at any given time. Power is made available through charged SMESs outputting power and through immediate power from power sources wired directly to the grid.
== Мощность энергосистемы ==


(System Power) = (Total Output Power of SMESs) + (Power Sources Wired to the Grid)
Под мощностью энергосистемы подразумевается доступный для станции в любой момент объём энергии. Энергия становится для неё доступной благодаря СПИН, раздающим энергию, а также благодаря подключённым непосредственно к самой энергосистеме генераторам энергии.


(Мощность Энергосистемы) = (Общая отдача кВт от СПИН) + (Источники энергии, подключенные напрямую к энергосистеме)


== Power Queue ==
== Очередность распределения энергии ==


To maintain a stable source of power for station equipment, the station power grid follows a ''power queue'' where an electrical component with higher rank on the queue has its power draw from the grid evaluated before an electrical component with a lower priority. APCs are typically the lowest priority since they only draw power, while the power sources on the station are the highest priority since they only produce power.
Для поддержания стабильной работы оборудования, станционная энергосистема следует ''очерёдности распределения энергии'',  где оборудование с более высоким приоритетом в очерёдности забирает энергию из системы раньше другого такого же оборудования с приоритетом пониже. Электрические щиты имеют самый низкий приоритет, поскольку они просто расходуют энергию, в то время как источники питания получают приоритет выше, ведь они выдают энергию.


{| class="wikitable"
{| class="wikitable"
|+  
|+  
!colspan = 3|Power Queue
!colspan = 3|Порядок очерёдности
|+
|+
! Rank !! Category !! Location
! Приоритет !! Оборудование !! Локация
|-
|1 ||colspan = 2|All Power Sources
|-
|2 ||Power Sink ||You wish I told you
|-
|-
|3 ||Solar SMES #1 ||Starboard Forward Solar Access
|1 ||colspan = 2|Все генераторы энергии
|-
|-
|4 ||Solar SMES #2 ||Port Forward Solar Access
|2 ||Power Sink ||Если бы кто знал...
|-
|-
|5 ||Solar SMES #3 ||Starboard Aft Solar Access
|3 ||СПИН солнечных панелей #1 ||Северо-восточные солнечные панели
|-
|-
|6 ||Solar SMES #4 ||Port Aft Solar Access
|4 ||СПИН солнечных панелей #2 ||Северо-западные солнечные панели
|-
|-
|7 ||Singlo SMES #1 || SMES Room
|5 ||СПИН солнечных панелей #3 ||Юго-восточные солнечные панели
|-
|-
|8 ||Singlo SMES #2 || SMES Room
|6 ||СПИН солнечных панелей #4 ||Юго-западные солнечные панели
|-
|-
|9 ||Singlo SMES #3 || SMES Room
|7 ||СПИН у сингулярности #1 || Комната с двигателем
|-
|-
|?? ||Gas Turbine SMES || Incinerator Access (Gas Turbine Power Room)
|8 ||СПИН у сингулярности #2 || Комната с двигателем
|-
|-
|10 ||Backups SMES #1 || Electrical Maintenance
|9 ||СПИН у сингулярности #3 || Комната с двигателем
|-
|-
|11 ||Backups SMES #2 || Electrical Maintenance
|10 ||Запасной СПИН #1 || Комната энерго-обслуживания в бриге
|-
|-
|12 ||colspan = 2|Station APC Queue
|11 ||colspan = 2|Станционные электрощиты
|+  
|+  
!colspan = 3|Isolated SMESs
!colspan = 3|Изолированные СПИН
|-
|N/A ||Gravity SMES || Gravity Generator Chamber
|-
|-
|N/A ||AI SMES || AI Chamber
|N/A ||СПИН ИИ || Ядро ИИ
|-
|-
|N/A ||Mining Output SMES || Mining Outpost
|N/A ||Шахтёрский основной СПИН || Шахтёрский аванпост
|-
|-
|N/A ||North Mining Output SMES || North Mining Outpost
|N/A ||Северные шахтёрские СПИН || Археологический аванпост
|-
|-
|N/A ||West Mining Output SMES || West Mining Outpost
|N/A ||Западный шахтёрский СПИН || Западный шахтёрский аванпост
|}
|}


=== Power Output and the Power Queue ===
=== Выходная мощность и очередность распределения ===


The most visible effect of the power queue is that if there is not enough output power available on the grid because a component with higher rank is requesting it, then a lower rank component will not charge. For example, if the Backup SMESs are set to input 200 kW each from the grid and the APCs draw 150 kW, but the grid only provides 250 kW total, then the second Backup SMES will not charge and around two out of three APCs will go unpowered as well.
Эффект поочерёдного распределения энергии очень сильно ощущается, когда выходной мощи недостаточно в энергосети, поскольку оборудование с высоким приоритетом потребило энергию, а оборудование с приоритетом ниже теперь не станет заряжаться. Например, если запасному СПИН #1 в бриге настроить приём энергии до 200 кВт от энергосети и учесть, что электрощиты потребляют ещё 150 кВт, а в энергосети в общем находится лишь 250 кВт, то любой другой установленный вдобавок СПИН не будет заряжаться, не говоря о том что два из трёх щитка наверняка разрядятся со временем.


=== SMES Charging and the Power Queue ===
=== Зарядка СПИН и очередность распределения ===


[[File:SMES_Room_markup.png|thumb|right|400px|The three Singlo SMESs in the SMES Room.]]
В комнате с движком есть три СПИН.


Similarly, if a higher rank component has a high enough output level to handle the station's power draw, then the station will draw all of its power from the higher rank component instead of splitting the draw with a lower rank component. This phenomenon is seen often when the singlo is set up. An unaware Engineer will purposefully set all three Singlo SMESs to output at a very high value, say 100 kW, or 300 kW, thinking that this will be more than enough to power the station. While this is technically correct, it isn't advised since it slows down the time it takes until all SMESs are completely full.
Аналогично, если СПИН с высоким приоритетом раздаёт достаточно энергии для того, чтобы зарядить станцию, то система будет забирать всю энергию ТОЛЬКО у него, вместо того чтобы разделять раздачу между другими СПИН. Этот феномен часто наблюдается при настройке сингулярности. Незнающий инженер специально установит всем СПИН высокую раздачу, скажем 200 кВт, думая, что вместе они будут давать больше энергии на станцию. Технически, так и есть, но оно не рекомендуется поскольку это сильно замедлит зарядку СПИН до максимума.


An example is the best way to see this. The total power draw on the station is usually near 150 kW. This means the station will draw 100 kW from Singlo SMES #1, 50 kW from Singlo SMES #2, and 0 kW from Singlo SMES #3, resulting in different charging rates of the SMESs. Since SMESs have a capacity of 3,333,333 W (3.33 MW) and assuming an input level of 200 kW, it should take 33.3 cycles before all the SMESs are completely charged (9.99 MW total power stored).
В качестве примера приведём следующую ситуацию. Допустим, станция в целом потребляет 150 кВт. А значит, энергосистема заберёт 100 кВт от СПИН у сингулярности #1 (хотя ставили мы ему 200 кВт), затем 50 кВт от сингулярного СПИН #2, и 0 кВт от третьего СПИН, из-за чего каждый из них будет заряжаться с разной скоростью. Эта троица СПИН имеет вместимость в 3,333,333 Вт (3.33 МВт) а если мы выставили им приём энергии на 200 кВт, то примерно через 33.3 цикла (оборот станции вокруг своей оси) все СПИН будут заряжены (содержа 9.99 МВт в общей сложности).


{| class="wikitable"
{| class="wikitable"
|+ Singlo SMES Non-optimized Charging for 150 kW Power Draw
|+ СПИН, неоптимизированный под запросы энергосистемы (потребляющей 150 кВт)
!colspan = 4| !! colspan = 3|Charge at n Cycles
!colspan = 4| !! colspan = 3|Сколько будет заряжено за n циклов
|+
|+
! Singlo Cell !! Input Level !! Draw !! Charge Rate !! 17 !! 23 !! 34
! Номер СПИН !! Сколько он принимает !! Сколько он отдаёт !! Сколько сохраняет !! 17 !! 23 !! 34
|-
|-
| SMES #1 || 200 kW || 100 kW || 100 kW || 1.70 MW || 2.30 MW || ''3.33 MW''
| #1 || 200 kW || 100 kW || 100 kW || 1.70 MW || 2.30 MW || ''3.33 MW''
|-
|-
| SMES #2 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW'' || ''3.33 MW''
| #2 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW'' || ''3.33 MW''
|-
|-
| SMES #3 || 200 kW || 0 kW || 200 kW || ''3.33 MW'' || ''3.33 MW'' || ''3.33 MW''
| #3 || 200 kW || 0 kW || 200 kW || ''3.33 MW'' || ''3.33 MW'' || ''3.33 MW''
|-
|-
|'''Total''' || '''600 kW''' || '''150 kW''' || '''450 kW''' || '''7.58  MW''' || '''8.96 MW''' || '''''9.99 MW'''''
|'''Итого''' || '''600 kW''' || '''150 kW''' || '''450 kW''' || '''7.58  MW''' || '''8.96 MW''' || '''''9.99 MW'''''
|}
|}


A better way is to set output levels on Singlo SMESs #1 and #2 to a third of the total power draw of the station (here, 50 kW), while allowing the remainder (also, 50 kW) to draw from Singlo SMES #3, which would be set higher than that to account for power fluctuations. For the same case where the total draw was 150 kW, we would set SMES #1 and #2 to 50 kW and SMES #3 to something higher like 200 kW. This would have all three SMESs charged in 22.2 cycles -- 33% faster than the situation above.
Если слегка подправить количество раздачи энергии СПИН #1 и #2, поменяв их на треть от общего потребления энергией (в этом примере это 50 кВт), позволяя требуемым остаткам (те же 50 кВт) забираться из третьего СПИН, что в результате незамысловатых расчётов окажется лучше, чем настройки выше. Говоря общо, если наша станция потребляет 150 кВт, мы можем поставить раздачу СПИН #1 и #2 на 50 кВт, а СПИН #3 поставить раздачу выше, например все 200 кВт. Такая настройка поможет СПИН зарядиться полностью за 22.2 цикла -- что на 33% быстрее чем при настройках выше.


[[File:SMES_Output_v_Cycles_to_Full_v01.png|thumb|400px|right|The optimal number of cycles it takes to charge the singlo SMESs is dependent on both not outputting too little, and not outputting too much.]]
'''Оптимальное количество поворотов станции вокруг своей оси (циклов), за время которых СПИН успеют зарядиться, также зависит от того, раздают ли они слишком много, или по чуть-чуть.'''


{| class="wikitable"
{| class="wikitable"
|+ Singlo SMES Optimized Charging for 150 kW Power Draw
|+ СПИН, оптимизированные под реалии станции, потребляющей 150 кВт
!colspan = 4| !! colspan = 2|Charge at n Cycles
!colspan = 4| !! colspan = 2|Сколько зарядится через n циклов
|+
|+
! Singlo Cell !! Input Level !! Draw !! Charge Rate !! 17 !! 23
! Номер СПИН !! Сколько он принимает !! Сколько он отдаёт !! Сколько сохраняет !! 17 !! 23
|-
|-
| SMES #1 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
| #1 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
|-
|-
| SMES #2 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
| #2 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
|-
|-
| SMES #3 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
| #3 || 200 kW || 50 kW || 150 kW || 2.55 MW || ''3.33 MW''
|-
|-
|'''Total''' || '''600 kW''' || '''150 kW''' || '''450 kW''' || '''7.65  MW''' || '''''9.99 MW'''''
|'''Итого''' || '''600 kW''' || '''150 kW''' || '''450 kW''' || '''7.65  MW''' || '''''9.99 MW'''''
|}
|}


= ENGINEERING WHY ARE WE LOSING POWER =
= ИНЖЕНЕРЫ МАТЬ ВАШУ ГДЕ ЭНЕРГИЯ =
 
Рано или поздно, практически на любой, даже идеально настроенной станции, энергия вдруг исчезнет. В этом случае ты - ДА, ТЫ, ЛЕНИВЫЙ МУДАК - должен ворваться на мостик и отозвать чертов шаттл, потому что ты все починишь! Энергия может исчезнуть по многим причинам. Пункт твоего отправления - консоль [[Computers#Консоль мониторинга электроснабжения|мониторинга электроснабжения]] в инженерном отделе, предполагая, что он еще не уничтожен. Затем, спросите себя, что происходит:
 
*'''Энергия пропала везде, в течение 10 секунд или еще быстрее?''' Вероятнее всего, это [[Syndicate_Items#Power_Sink|поглотитель энергии]]. У поглотителей есть странная особенность - они не высасывают энергию из области, где установлены, поэтому лучше всего будет искать отсек, где все еще работает свет или хотя бы двери.
 
*'''Энергия исчезает везде, но постепенно, отсек за отсеком?''' Это значит, что проблема в самом Инженерном отсеке, так как станция получает электричество именно отсюда. Для начала, сразу будет очевидно, если двигатель не запущен или уже упущен. Следующий пункт - СПИН. Убедитесь, что энергии на выходе достаточно, чтобы покрыть ее расход ИЛИ, если ни один электрический щит не отображается на [[Computers#Консоль мониторинга электроснабжения|консоли мониторинга электроснабжения]], это значит, что где-то в инженерном или его окрестностях была обрезана проводка и энергия не поступает на станцию.
 
*'''Энергия кончилась в конкретной области?''' Вероятнее всего, проблема в обрезанной проводке, самый простой способ найти это место - прочесать окрестности с мультитулом и [[Engineering_Items#Рентген сканер|T-Ray]] сканером и, чем лучше вы знакомы с расположением проводов энергосети, тем легче вам будет ориентироваться на местности.
 
*'''Энергия кончилась в одной комнате?''' Скорее всего, что-то не так с [[APC|электрощитом]]. Либо он был взломан, либо каким-то образом разрушен, либо в нем попросту нет батарейки, а может кто-то взял и выключил на щитке режим зарядки. Опять же, нельзя исключать повреждение проводки.


Sooner or later, on every barely functional space station, the power will go out. This is where you - YES, YOU, YOU LAZY FUCK - come in and call out to recall that shuttle because you can fix it! Power can go out for many reasons. Your first port of call should be the Power Monitoring console in engineering, assuming it still exists. Then, ask yourself what's going on:
*'''Питание идет с перебоями. Оборудование отключается на некоторое время, включается, а затем снова отключается?''' Ваши СПИН не отдают достаточно энергии для зарядки всех электрических щитов. Часто так случается, если уровень потребления примерно равен уровню отдачи.


*'''Power goes out everywhere, in under 10 seconds or so?''' This is most likely a power sink. Power sinks have the odd quirk of still powering the area they are placed in, so your best bet is to get searching for somewhere where the lights are still on, or if it's in maint, where you don't have to crowbar the doors.
*'''СПИН не заряжается никак без какой-либо причины?''' Баг. Напишите в F1 и попросите администраторов решить эту проблему.
*'''Power goes out everywhere, but gradually, section by section?''' This means there's a problem in Engineering itself as the rest of the station is being topped up with charge. It'll be immediately obvious if the engine isn't on/has escaped. Your next port of call should be the SMES cells. Check they're outputting enough power to overcome the drain OR if no APCs are showing on the Power Monitoring computer, it means a wire has been cut either inside or immediately outside the Engineering area and is not being supplied to the rest of the station.
*'''Power is out across a small area?''' This is most commonly a broken wire, the easiest way to find it is with familiarity with the power-net and using that in conjunction with the power monitoring computer. If an area has had all wires sending power to it snipped, its APCs will no longer show on the power monitoring computer. For example, if Medbay as a whole has lost power and isn't showing any of its APCs on the power monitor. The wire cut is most likely in the maint tunnel behind Medbay. The more familiar you become with the power nets, the quicker you will be able to work out where the break is and be able to recognize common spots used.
*'''Power is out across 2 small rooms or in one room?''' This is most likely an APC that has been tampered with in some way. Either hacked by an AI/Saboteur, destroyed somehow or just had its cell ripped out. Again, if the APC doesn't show up on the Power Monitoring computer, it means it's been severed from the power net and wire either inside that room or very close to the APC has been cut.
*'''Power is intermittent across the station. Stuff turns off for a while, starts working, then goes off again?''' Your SMES aren't outputting enough power to keep the APCs charged. This happens most often when the output is just under the drain so therefore some APCs get enough power, while others don't.
*'''The smes'es cycle between getting power and not getting power for seemingly no reason''' Bug. admin help it. Can be fixed by admins by restarting the master controller.
*'''Power isn't actually out?''' Either someone is crying wolf or something else has happened to make it ''look'' like power went out, most likely an  [[Random_event#Electrical_Storm|electrical storm]].


Now that you know what's wrong with power, it's your job to [[Beyond the impossible|fix it]]! If the singularity is about to be fucked, ''TURN OFF THE PA IMMEDIATELY'' (it may be worth asking the AI) and wire solars, if they aren't already wired. It might also be necessary to replace equipment. There is a PACMAN located in the SMES room and a spare SMES unit located in [[Electrical Maintenance]], both of which no one ever remembers. You could also rebuild everything. The tools to build a new SMES are located in [[Tech Storage]], and cargo can order new solar equipment and even a new goddamn PA! ...Assuming they haven't already done so and pointed it your way, that is.
*'''Энергия просто взяла и разом исчезла?''' Все очень плохо, а скорее всего, станция просто временно [[Random_events|обесточена]].


Теперь, когда вы знаете, почему исчезла энергия, ваш долг - восстановить ее! Если сингулярность отказалась есть станцию и улетела в космос, подключите солнечные панели, если не сделали этого раньше. Затем, вам может быть придется построить новые СПИН, запчасти для них можно взять в РнД или просто разобрать один из резервных (около солнечных панелей). Также, карго может заказать полностью новый ускоритель частиц и другое оборудование для настройки нового двигателя!
[[Category:Guides]]
[[Category:Guides]]

Текущая версия на 12:53, 3 июля 2024

Construct.png

Этот раздел или статья в стадии разработки.
Информация на этой странице может оказаться неполной или не соответствовать реальности.
В данный момент её редактированием никто не занят.

Введение

Понимание всех тонкостей оборота энергии на станции - ключ к поддержанию ее на плаву.

Место, где рождается энергия на станции - Инженерный отсек. Без Инженеров, которые обеспечат беспрерывную подачу энергии, станция не сможет функционировать нормально и быстро скатится в дегенеративное общество, ничем по сути не отличающееся от дикой орды низшей касты ассистентов, которые, даже если приковать их к педальным генераторам, не смогут обеспечить станцию нужным количеством энергии.

Источники энергии

Суперматерия

Суперматерия - это гигантский кристалл чистого форона, способный вырабатывать как ионизирующее излучение, так и легковоспламеняющийся газ. В то время как генерация этих элементов в нормальном состоянии довольно мизерная, суперматерия может быть "активирована" для раскрытия всего своего потенциала. Ваша главная работа в качестве инженера - охладить суперматерию, чтобы она не рванула (к счастью для вас, это очень легкая работа), одновременно с этим слегка повреждать ее, чтобы собирать импульсы излучения. Некоторые люди считают, что суперматерия практически невосприимчива к саботажу; прочитайте руководство по настройке, и это действительно будет так.

Сингулярность и Тесла

Singularity.PNG

Сингулярность и двигатель Тесла - основные источники энергии на станции. Используя или излучаемую энергию от контролируемой Сингулярности (также известной, как рукотворная черная дыра), или прямо поглощая электроэнергию от гигантской шаровой молнии, будут вырабатываться огромные объемы электроэнергии для нужд станции.

Сингулярный двигатель

Гигантская энергия, вырабатываемая сингулярностью, имеет форму ионизированных ЭМИ. Эти импульсы взаимодействуют с загадочным веществом, именуемым фороном и генерируют электричество. Чем больше форона и чем сильнее и чаще импульсы, тем больше будет вырабатываться энергии. Эффективную выходную мощность можно измерить напрямую, используя мультитул на проводке коллекторов, или посмотрев консоль мониторинга энергии (правда, данные оттуда могут быть искажены, если на станции присутствуют дополнительные источники энергии, например, солнечные панели).

Двигатель Тесла

Этот гигантский шар ослепительной энергии регулярно выбрасывает мощнейшие электрические дуги, которые, как правило, распространяются по наиболее проводящим/имеющим наименьшее сопротивление путям. Энергию этих дуг частично поглощают катушки Тесла, а заземлители принимают на себя все излишки и безопасно рассеивают их по всей станции. Это свойство заземлителей широко применяется непосредственно для защиты сотрудников рядом с генератором, а так же для защиты чувствительной электроники.

Солнечные панели

Solars.png

Прочтите статью про Соляры.

Солнечные батареи являются вторичным источником энергии. На станции всего 4 солнечных батарей и состоят они из 60ти панелей каждая. Каждая панель может производить 1.5 кВт мощности, а батарея - 90 кВт.

На станции всего четыре солнечных батареи. Ближайшая находится западнее инженерного отсека, вторая находится на западе от брига, третья находится севернее РнД, четвертая находится на юго-востоке, недалеко от библиотеки.

Солнечные батареи производят энергию только когда направлены в сторону ближайшей звезды. (Звезду не видно со станции.) Чтобы довести производительность панелей до максимума, нужно подключить "solar tracking module" к схеме солнечной батареи, и, с помощью "solar power console" панели смогут следить за положением звезды. Важно отметить, что станция меняет свое положение относительно солнца (Что, опять же, невозможно увидеть на экране.) и солнечные панели часто попадают в тень станции, что негативно влияет на продуктивность батарей. Поэтому у солнечных батарей существует так называемый "Дневной цикл"(Когда они попадают под лучи солнца.) и "Ночной цикл"(Когда они находятся в тени.). Именно по этой причине солнечные батареи будут генерировать энергию около 50% процентов времени, то есть 45 кВт вместо возможных 90 кВт.

Солнечные панели могут быть сломаны космическими обломками. Каждая сломанная панель уменьшает производимую мощность всей батареи.

Солнечные батареи часто могут питать станцию полностью, если подключены правильно.

Выработка солнечной энергии
Максимальная Средняя
с одной панели с батареи с батареи
1500 Вт (5,4 мДж/ч) 90000 Вт (324 мДж/ч) 45000 Вт (162 мДж/ч)

Подключение панелей к сети

Существует два основных способа подключения солнечных панелей:

  • использовать СПИН солнечной батареи для подачи энергии в сеть
  • подключать солнечную батарею напрямую в сеть

Распределение через СПИН

Распределение солнечной энергии через СПИН - это наиболее предпочтительный метод подключения солнечных панелей, главным образом потому, что он обеспечивает стабильную выходную мощность и не требует дополнительной проводки. Одно из преимуществ предварительно проложенной проводки к СПИН состоит в том, что во время ночного цикла инженеру не нужны изоляционные перчатки для подключения солнечной батареи.

Выходная мощность на СПИН должна составлять не более 50% от входной из-за оборота станции вокруг местной звезды (процентное соотношение просчитано, но не подтверждено). Поскольку солнечные панели должны собирать достаточно энергии в дневном цикле массива, чтобы выводить ее как днем, так и ночью, обычно лучше немного округлить. Кроме того, если солнечная батарея изначально подключена во время дневного цикла, она, как правило, не сможет собрать достаточно энергии, чтобы держать ее заряженной в течение первого ночного цикла, что приведет к небольшому запаздыванию на выходе батареи. Например, если входная мощность установлена на 85500 Вт (85,5 кВт), выходная мощность не должна превышать 42750 Вт (42,75 кВт). Как правило, 40 кВт - хорошее круглое число для долгосрочной выходной мощности.

Если требуется больше накопленной энергии, скажем, на начальном этапе установки, инженер может уменьшить или даже отключить выходную мощность в течение первых нескольких солнечных циклов, прежде чем устанавливать долгосрочную выходную мощность.

После того как все четыре СПИН будут заряжены и будут выдавать долгосрочную мощность, они обеспечат очень надежную выходную мощность практически не требуя надзора. В нашем примере станция получит 160 кВт (4 массива x 40 кВт выходной мощности СПИН) от солнечных батарей, что обычно более чем достаточно для поддержания станции без двигателя. Эта система также является модульной, так что, даже если используются только три из четырех СПИН, общая выходная мощность соответственно уменьшается, но остается полностью стабильной.

Тем не менее, если их не проверять, поглотитель энергии может истощить солнечные СПИН, которые, в случае их истощения, должны будут снова пройти солнечный цикл, прежде чем они смогут обеспечить устойчивую, адекватную мощность для станции.

Самые большие неисправности системы СПИН чаще всего вызваны ошибкой инженера, а не поглотителем энергии. Инженер-новичок обычно устанавливает уровни входа и выхода слишком высокими или слишком низкими для значимого поддержания станции, и / или не может переустановить СПИН на более адекватный уровень выхода после первоначальной зарядки СПИН.

Плюсы: Стабильный источник питания, дополнительная проводка не требуется, накапливает энергию, модульная, не требует изоляционных перчаток.

Минусы: Задержка из-за первого ночного цикла и начальной зарядки СПИН, подверженность неправильной настройке, возможность истощения с помощью поглотителя энергии.

Подключение к энергосети

Подключение солнечных батарей непосредственно к сети часто используется в качестве более простого подхода к подключению, что выгодно инженеру, обходя хитросплетения СПИН и генерируя в целом большую выходную мощность, но за счет менее устойчивого и менее модульного источника энергии. Это часто полезно в чрезвычайных обстоятельствах, когда сингулярность сбежала или по иной причине недоступна, что делает солнечные батареи основным источником питания.

Чтобы достичь этого, инженер обычно просто соединяет кабель, идущий от батареи непосредственно к кабелю, выходящему из помещения для обслуживания солнечных панелей. Как правило, изоляционные перчатки необходимы, так как инженер должен будет подключить линии электропередач солнечной батареи к основной электрической сети. Однако, как бы легко это ни звучало, инженеры-новички, как правило, ломают проводку настолько сильно, что линии электропередач батареи никогда не соединяются с сетью.

Как только все батареи подключены, в результате цикла день-ночь, в среднем, в любой момент времени будет генерироваться мощность около двух солнечных батарей, что составляет около 180 кВт мощности. Однако точное число будет колебаться в зависимости от того, сколько света достигает отдельных панелей. Кроме того, если не все солнечные панели подключены к сети, выходной сигнал будет значительно ниже и может вызвать перебои питания на станции.

С положительной стороны, подключение панелей непосредственно к сети предотвращает саботаж проводки, так как любой, кто перерезает провода, также нуждается в изоляционных перчатках. Кроме того, поглотители энергии представляют небольшой риск, поскольку солнечная энергия является прямой и не распространяется через СПИН.

Плюсы: Простое объяснение, не нужно настраивать СПИН, предотвращает саботаж, действует в качестве основного источника энергии, не подвержен поглотителям энергии.

Минусы: Незначительные колебания мощности, если все панели подключены, серьезные колебания, если подключены не все, требуют изоляционных перчаток, часто бывают неправильно соединена.

Двойное подключение: что может быть лучше?

Есть еще один, менее используемый вариант, который использует преимущества обоих способов подключения при одновременном снижении риска: двухпроводное подключение солнечных батарей как к СПИН, так и непосредственно к сети одновременно.

Первоначально инженеру стоит зарядить СПИН достаточно для того, чтобы они могли обеспечить необходимый запас энергии. Затем, если инженер достаточно опытен в проводке, и СПИН, и солнечные батареи могут быть подключены к сети одновременно. Поскольку станция потребляет всего около 150 кВт, а солнечные батареи, подключенные к сети, вырабатывают 180 кВт, есть запасные 30 кВт, которые нужно разделить между СПИН для подзарядки. Возможна установка всех четырех СПИН для зарядки при 6 кВт(уменьшена с 7,5 кВт для учета сломанных солнечных панелей). Настройка выходной мощности на СПИН может принимать любые значения, при условии, что станция получает полную мощность от проводов, подключенных напрямую. Это делает СПИН резервным источником питания.

СПИН будут по-прежнему подвержены влиянию поглотителя энергии, но поскольку солнечные батареи подключены непосредственно к сети, это не имеет большого значения.

Недостаток состоит в том, что все солнечные батареи должны быть подключены непосредственно к сети, чтобы предотвратить сильные колебания. Это не относится к СПИН этой системы. Каждый СПИН действует как независимый резервный источник, поэтому любые нежелательные СПИН не нужно устанавливать, что делает систему полу-модульной.

Плюсы: действует как основной и резервный источник питания, предотвращает саботаж, устойчив к поглотителям энергии, полу-модульный, устойчив к перебоям

Минусы: серьезные колебания, если подключены не все панели, требует изоляционных перчаток, часто бывает неправильно соединена, требуют начальной зарядки и контроля над СПИН перед внедрением

Портативные генераторы

Портативные генераторы пользуются спросом, когда все остальные системы отключаются. Они нуждаются в топливе, которое загружается руками прямо в генератор. Тип топлива отличается в зависимости от типа.

Портативные генераторы можно улучшить, заменив детали на новые в протолате. Scrapman

Типы генераторов и топливо для них
Tип Топливо
P.A.C.M.A.N. Portable Generator Phoron
M.R.S.P.A.C.M.A.N. Portable Generator Diamond
S.U.P.E.R.P.A.C.M.A.N. Portable Generator Uranium
S.C.R.A.P.M.A.N. Portable Generator Scrap

Один ПАКМАН и форон для его питания находится в инженерном хранилище. По 2 СКРАПМАНА находится у мусорщиков и у шахтеров. Еще 4 ПАКМАНа находятся на астероиде (2 у ученых, 2 у шахтеров).

Батарейки

Батарейки используются для питания вещей меньших масштабов, нежели станция. Например, электрических щитов и киборгов. Создаются в протолате, делятся на разные типы в зависимости от емкости: обычная батарейка (default), высокой емкости (high-capacity), супер-высокой емкости (super-capacity), гипер (hyper-capacity) и блюспейс (bluespace-capacity).

В игре имеется также картофельная и батарейка из ядра слизня.

Емкости в зависимости от типа
Тип Емкость (Вт)
Стандартные батарейки
Power Cell 1000
High-Capacity Power Cell 15000
Super-Capacity Power Cell 20000
Hyper-Capacity Power Cell 30000
Bluespace-Capacity Power Cell 40000
Нестандартные батарейки
Potato Cell 300
Slime Core Cell 10000

Распределение энергии

Энергосеть

Для большинства людей это просто провода, которые бьются током, если их резать без изоляционных перчаток. Но на самом деле, электрическая сеть это "хребет" станции, питающий все: от эмиттеров, удерживающих сингулярность, до туалетов, которыми вы никогда не пользуетесь. А еще она может обжечь вас, если вы не носите изоляционные перчатки.

Схема энергосетей станции

Энергосети станции

На станции три основных энергосети:

  • Основная, питающая все электрические щиты станции (красный провод)
  • Зарядная, передающая энергию от генераторов в СПИН (желтый провод)
  • Эмиттерная, соединяющая инженерный СПИН с эмиттерами сдерживающего поля (красный провод)

В основную сеть не входит спутник ИИ и два электрощита в инженерной возле двигателя и в офисе Главного инженера. Эти щитки заряжаются напрямую от Зарядной энергосети. Зарядная сеть принимает энергию от радиационных коллекторов при работе сингулярного двигателя или от катушек Тесла при работе двигателя Тесла. У каждого блока солнечных панелей есть свой СПИН, который принимает энергию от панелей и отдает её прямиком в Основную энергосеть.

Подробнее о СПИН станции можно прочитать тут.

СПИН

SMES Charging.gif

Сверхпроводящий Индуктивный Накопитель - СПИН или SMES - гигантская версия батарейки. Стандартно настроенный СПИН включает:

  1. Вход для энергии от источника (терминал), например от панелей, сингулярного двигателя или просто из общей энергосети, если СПИН используется в качестве резервного хранилища.
  2. Выход для энергии в энергосеть или в закрытую энергосистему типа спутника ИИ или шахтерской станции.

Свойства СПИН

СПИН обладает модифицируемым хранилищем энергии, зависящим от батареек, которые были вставлены в него при постройке. Все СПИН, находящиеся на станции, по умолчанию имеют 5 МВт емкости и заряжены на 25%.

Зависимость емкости SMES от батареек
Батарейка Емкость (Вт)
на одну батарейку на 5 батареек
Стандартные
Standard 50000 (50 кВт) 250000 (250 кВт)
High-Capacity 1000000 (1 МВт) 5000000 (5 МВт)
Super-Capacity 2000000 (2 МВт) 10000000 (10 МВт)
Hyper-Capacity 3000000 (3 МВт) 15000000 (15 МВт)
Bluespace-Capacity 10000000 (10 МВт) 20000000 (20 МВт)
Нестандартные
Potato Cell 30000 (30 кВт) 150000 (150 кВт)
Slime Core Cell 1000000 (1 МВт) 5000000 (5 МВт)

Потребление (зарядка) СПИН и отдача могут быть модифицированы с помощью конденсаторов. Все стандартные СПИН с базовыми конденсаторами имеют максимальные входную и выходную мощности в 200 кВт.

Уровни потребления/отдачи в зависимости от конденсатора
Конденсатор Max уровень потребления Max уровень отдачи
Basic 200000 Вт (200 кВт) 200000 Вт (200 кВт)
Advanced 400000 Вт (400 кВт) 400000 Вт (400 кВт)
Super 600000 Вт (600 кВт) 600000 Вт (600 кВт)
Quadratic 800000 Вт (800 кВт) 800000 Вт (800 кВт)

Электрощит

APC2.gif

Электрощит (APC), или электрический щит находится во всех отсеках, которые питаются энергией. Они могут использоваться для включения/выключения оборудования и дверей в комнате, освещения и поддержания окружающей среды (вентиляция).

Общие представления

Мощность энергосистемы

Под мощностью энергосистемы подразумевается доступный для станции в любой момент объём энергии. Энергия становится для неё доступной благодаря СПИН, раздающим энергию, а также благодаря подключённым непосредственно к самой энергосистеме генераторам энергии.

(Мощность Энергосистемы) = (Общая отдача кВт от СПИН) + (Источники энергии, подключенные напрямую к энергосистеме)

Очередность распределения энергии

Для поддержания стабильной работы оборудования, станционная энергосистема следует очерёдности распределения энергии, где оборудование с более высоким приоритетом в очерёдности забирает энергию из системы раньше другого такого же оборудования с приоритетом пониже. Электрические щиты имеют самый низкий приоритет, поскольку они просто расходуют энергию, в то время как источники питания получают приоритет выше, ведь они выдают энергию.

Порядок очерёдности
Приоритет Оборудование Локация
1 Все генераторы энергии
2 Power Sink Если бы кто знал...
3 СПИН солнечных панелей #1 Северо-восточные солнечные панели
4 СПИН солнечных панелей #2 Северо-западные солнечные панели
5 СПИН солнечных панелей #3 Юго-восточные солнечные панели
6 СПИН солнечных панелей #4 Юго-западные солнечные панели
7 СПИН у сингулярности #1 Комната с двигателем
8 СПИН у сингулярности #2 Комната с двигателем
9 СПИН у сингулярности #3 Комната с двигателем
10 Запасной СПИН #1 Комната энерго-обслуживания в бриге
11 Станционные электрощиты
Изолированные СПИН
N/A СПИН ИИ Ядро ИИ
N/A Шахтёрский основной СПИН Шахтёрский аванпост
N/A Северные шахтёрские СПИН Археологический аванпост
N/A Западный шахтёрский СПИН Западный шахтёрский аванпост

Выходная мощность и очередность распределения

Эффект поочерёдного распределения энергии очень сильно ощущается, когда выходной мощи недостаточно в энергосети, поскольку оборудование с высоким приоритетом потребило энергию, а оборудование с приоритетом ниже теперь не станет заряжаться. Например, если запасному СПИН #1 в бриге настроить приём энергии до 200 кВт от энергосети и учесть, что электрощиты потребляют ещё 150 кВт, а в энергосети в общем находится лишь 250 кВт, то любой другой установленный вдобавок СПИН не будет заряжаться, не говоря о том что два из трёх щитка наверняка разрядятся со временем.

Зарядка СПИН и очередность распределения

В комнате с движком есть три СПИН.

Аналогично, если СПИН с высоким приоритетом раздаёт достаточно энергии для того, чтобы зарядить станцию, то система будет забирать всю энергию ТОЛЬКО у него, вместо того чтобы разделять раздачу между другими СПИН. Этот феномен часто наблюдается при настройке сингулярности. Незнающий инженер специально установит всем СПИН высокую раздачу, скажем 200 кВт, думая, что вместе они будут давать больше энергии на станцию. Технически, так и есть, но оно не рекомендуется поскольку это сильно замедлит зарядку СПИН до максимума.

В качестве примера приведём следующую ситуацию. Допустим, станция в целом потребляет 150 кВт. А значит, энергосистема заберёт 100 кВт от СПИН у сингулярности #1 (хотя ставили мы ему 200 кВт), затем 50 кВт от сингулярного СПИН #2, и 0 кВт от третьего СПИН, из-за чего каждый из них будет заряжаться с разной скоростью. Эта троица СПИН имеет вместимость в 3,333,333 Вт (3.33 МВт) а если мы выставили им приём энергии на 200 кВт, то примерно через 33.3 цикла (оборот станции вокруг своей оси) все СПИН будут заряжены (содержа 9.99 МВт в общей сложности).

СПИН, неоптимизированный под запросы энергосистемы (потребляющей 150 кВт)
Сколько будет заряжено за n циклов
Номер СПИН Сколько он принимает Сколько он отдаёт Сколько сохраняет 17 23 34
#1 200 kW 100 kW 100 kW 1.70 MW 2.30 MW 3.33 MW
#2 200 kW 50 kW 150 kW 2.55 MW 3.33 MW 3.33 MW
#3 200 kW 0 kW 200 kW 3.33 MW 3.33 MW 3.33 MW
Итого 600 kW 150 kW 450 kW 7.58 MW 8.96 MW 9.99 MW

Если слегка подправить количество раздачи энергии СПИН #1 и #2, поменяв их на треть от общего потребления энергией (в этом примере это 50 кВт), позволяя требуемым остаткам (те же 50 кВт) забираться из третьего СПИН, что в результате незамысловатых расчётов окажется лучше, чем настройки выше. Говоря общо, если наша станция потребляет 150 кВт, мы можем поставить раздачу СПИН #1 и #2 на 50 кВт, а СПИН #3 поставить раздачу выше, например все 200 кВт. Такая настройка поможет СПИН зарядиться полностью за 22.2 цикла -- что на 33% быстрее чем при настройках выше.

Оптимальное количество поворотов станции вокруг своей оси (циклов), за время которых СПИН успеют зарядиться, также зависит от того, раздают ли они слишком много, или по чуть-чуть.

СПИН, оптимизированные под реалии станции, потребляющей 150 кВт
Сколько зарядится через n циклов
Номер СПИН Сколько он принимает Сколько он отдаёт Сколько сохраняет 17 23
#1 200 kW 50 kW 150 kW 2.55 MW 3.33 MW
#2 200 kW 50 kW 150 kW 2.55 MW 3.33 MW
#3 200 kW 50 kW 150 kW 2.55 MW 3.33 MW
Итого 600 kW 150 kW 450 kW 7.65 MW 9.99 MW

ИНЖЕНЕРЫ МАТЬ ВАШУ ГДЕ ЭНЕРГИЯ

Рано или поздно, практически на любой, даже идеально настроенной станции, энергия вдруг исчезнет. В этом случае ты - ДА, ТЫ, ЛЕНИВЫЙ МУДАК - должен ворваться на мостик и отозвать чертов шаттл, потому что ты все починишь! Энергия может исчезнуть по многим причинам. Пункт твоего отправления - консоль мониторинга электроснабжения в инженерном отделе, предполагая, что он еще не уничтожен. Затем, спросите себя, что происходит:

  • Энергия пропала везде, в течение 10 секунд или еще быстрее? Вероятнее всего, это поглотитель энергии. У поглотителей есть странная особенность - они не высасывают энергию из области, где установлены, поэтому лучше всего будет искать отсек, где все еще работает свет или хотя бы двери.
  • Энергия исчезает везде, но постепенно, отсек за отсеком? Это значит, что проблема в самом Инженерном отсеке, так как станция получает электричество именно отсюда. Для начала, сразу будет очевидно, если двигатель не запущен или уже упущен. Следующий пункт - СПИН. Убедитесь, что энергии на выходе достаточно, чтобы покрыть ее расход ИЛИ, если ни один электрический щит не отображается на консоли мониторинга электроснабжения, это значит, что где-то в инженерном или его окрестностях была обрезана проводка и энергия не поступает на станцию.
  • Энергия кончилась в конкретной области? Вероятнее всего, проблема в обрезанной проводке, самый простой способ найти это место - прочесать окрестности с мультитулом и T-Ray сканером и, чем лучше вы знакомы с расположением проводов энергосети, тем легче вам будет ориентироваться на местности.
  • Энергия кончилась в одной комнате? Скорее всего, что-то не так с электрощитом. Либо он был взломан, либо каким-то образом разрушен, либо в нем попросту нет батарейки, а может кто-то взял и выключил на щитке режим зарядки. Опять же, нельзя исключать повреждение проводки.
  • Питание идет с перебоями. Оборудование отключается на некоторое время, включается, а затем снова отключается? Ваши СПИН не отдают достаточно энергии для зарядки всех электрических щитов. Часто так случается, если уровень потребления примерно равен уровню отдачи.
  • СПИН не заряжается никак без какой-либо причины? Баг. Напишите в F1 и попросите администраторов решить эту проблему.
  • Энергия просто взяла и разом исчезла? Все очень плохо, а скорее всего, станция просто временно обесточена.

Теперь, когда вы знаете, почему исчезла энергия, ваш долг - восстановить ее! Если сингулярность отказалась есть станцию и улетела в космос, подключите солнечные панели, если не сделали этого раньше. Затем, вам может быть придется построить новые СПИН, запчасти для них можно взять в РнД или просто разобрать один из резервных (около солнечных панелей). Также, карго может заказать полностью новый ускоритель частиц и другое оборудование для настройки нового двигателя!